

ECE 358

Winter 2020

Project 2: CSMA/CD Performance Evaluation

Prepared By:

Chandrakiran Subramaniam (20649890)

Teresa Cao (20650034)

Table of Contents

1. PROJECT AND CODE DESCRIPTION 3

2. SYSTEM DESIGN AND IMPLEMENTATION 6

3. SIMULATION RESULTS: Persistent CSMA/CD 11

4. SIMULATION RESULTS: Non-persistent CSMA/CD 13

1. PROJECT AND CODE DESCRIPTION

INTRODUCTION:

The protocol (CSMA/CD) is implemented using discrete event simulation which considers the
(whole) system as a discrete sequence of events. The simulation clock (T=1000) keeps track of
the current simulation time. The packet generation at the nodes and transmission time of the
packets are all tracked by their respective timer variable. At every event, the time value is
updated by adding the appropriate delay. The simulation clock helps in regulating the total
simulation time of the algorithm. The simulation (persistent and non-persistent) has been
implemented using Python.

CODE ANALYSIS:

1. class Packet (Packet object):

This class acts as an object for our Packet queue. The constructor initializes the packet
time to the value passed in the time parameter.

2. def get_exp_rv (Random Variable Generator):

This method returns an exponentially distributed random number using a random number. This

method is used to generate a random packet time.

3. def setup_buffers (An array of nodes/hosts for our LAN):

This method returns an array of nodes where each node has a deque of packets. Note that the

last packet (for each node) will have an assigned time less than or equal to our
simulation time (packetTime <=T).

4. def get_earliest_transmitter (Returns nodeID having the smallest time in packet

queue):

This method returns the nodeID of the node having the smallest packet time (using linear

search). In other words, when our simulation begins, this node will start transmitting
packets first.

5. def get_exp_backoff (Returns a backoff time when a collision happens)

This method, when called, returns a backoff time for when a collision happens. The formula

used is taken from the lab manual. Note that the return value is in bit time.

6. def delay_packets (Delays/reschedules packets’ packetTime):

This method is called when there are packets scheduled to start in the middle of a packet

transmission. These packets are rescheduled/delayed (given by delayUntil) to start
transmission after the ongoing transmission has finished.

7. def main (CSMA/CD simulation body):

The main method is the heart of our CSMA/CD simulation. The CSMA/CD algorithm is realized

in this part using the helper functions/methods discussed above. The above code
snippet shows only the variable initialization. The code that follows will be explored in
depth in the design section of this report.

2. SYSTEM DESIGN AND IMPLEMENTATION

SYSTEM DESIGN:

The CSMA/CD protocol design is as follows (flowchart has been edited to address code
variables):

The simulator progresses in a sequential manner, following the above flowchart, using one
thread (single-threaded) for both persistent and non-persistent detection. Our simulation is
programmed to process and transmit packets of all nodes. Console outputs include network
statistics like efficiency and throughput. Inputs to the simulator are as follows:

The CSMA/CD protocol will be simulated in two modes (boolean persistent parameter in main).
In the persistent mode (persistent = True), all users listen to the line prior to transmitting. If
traffic is sensed, they wait. When the line becomes free, packets are transmitted immediately. In
the non-persistent mode (persistent = False), a user is ready to send data senses the line and
commences transmission if free. If the line is busy, the user does not continue sensing, but
backs off for a random time before sensing it again, and so on.

IMPLEMENTATION:

The simulation is implemented in the following phases:
Phase 1: Recognize the transmitter node and detect for collision in the remaining nodes.
Phase 2: A collision has occurred! How do we handle it?
Phase 3: No collision has occurred! How do we handle it?
Phase 4: Calculate desired network statistics

As per the manual, some assumptions have been made for this simulation. It is worth to note
them:

Let us now walk through each phase of the implementation (concluded by code snippets of our
simulator). Important variables are italicized followed by a short description.

Phase 1: Recognize the transmitter node and detect for collision in the remaining nodes.

- transmitterID: The transmitting node ID/position
- busyCtrs: Non-persistent sensing counter
- firstBitTime: Time for the first bit of packet from transmitter to arrive at any given node

The transmitterID is set by calling the helper method get_earliest_transmitter() to get the node
index that gets to transmit first. Keep note of the non-persistent sensing counter busyCtrs. Once
we get our transmitter ID, we enter the collision detection loop. In this loop, the time needed for
the first bit from the transmitter to arrive at that respective node is calculated (via firstBitTime).
But what causes collision? If the node starts to transmit before the first bit arrives, from the
transmitter (buffers[nodeID][0].packetTime <= firstBitTime), there is a collision!

Phase 2: A collision has occurred! How do we handle it?

- maxCollisions: A cap on the maximum number of collisions (10)
- delayUntil: Holds the return value of our back off method get_exp_backoff()
- collisionCtrs[ID]: Holds the number of collisions at given node/transmitter ID

A collision is detected. Let us address the nodes in our network (call it the node domain). We
loop through all our nodes in the network and increment the collision counter for the nodes
where a collision is experienced. Our non-persistent sensing counter is reset. We also need to
check if the packet, for that given node, has exceeded our maxCollisions. If it has, we drop the
packet and reset the collision counter on that node. If not, we follow the algorithm and perform
an exponential back off (delayUntil). The helper method delay_packets() is called to delay all
remaining packets in the queue by the back off time. We should also increment our attempts
counter.

Now let us address our transmitter. We also need to delay our transmitter packet times. This
delay is given by the sum of the current packet time + a back off time + propagation delay. Let’s
not forget to increment our attempts counter.

Phase 3: No collision has occurred! How do we handle it?

- lastBitTime: Time for the last bit of packet from transmitter to arrive at any given node
- nonPersistentWaitime: Back off time calculated in the non-persistent mode
- lastBitSentTime: Time (at transmitter side) when last bit of packet is on the link

A collision has not been detected. We perform medium sensing and perform actions based on
the operation mode, persistent or non-persistent. Note that we need to calculate the time taken
for the last bit to arrive at given nodes in the network to ensure successful transmission of a
packet.

Let’s address the nodes in our network (the node domain) via a for loop. The lastBitTime is
calculated and we check if the channel is busy. If it is busy and persistent, we defer the packet
times of that node by lastBitTime. If the channel is busy and non-persistent, we first increment
our busyCtrs counter. We drop the packet if it exceeds our maxCollisions and reset busyCtrs. If
maxCollisions is not exceeded, we proceed to calculate our non-persistent backoff
(nonPersistentWaitime) and delay all packets of that node by this back off time.

We increment our attempts and success counter after the above steps. A packet has
successfully been transmitted. So, we now calculate the last bit sent time (different from
lastBitTime as propDelay is not included) and delay our remaining transmitter packets’ times by
this amount. The transmitted packet is popped, and collision counter is reset on the transmitter.

Phase 4: Calculate desired network statistics

- efficiency: Efficiency of the protocol
- throughput: Throughput of the protocol

Note that if the simulation time reaches T (1000 seconds), we exit our while loop. That is, we
end our simulation. The network statistics are then calculated and displayed to the console.

3. SIMULATION RESULTS: Persistent CSMA/CD

EFFICIENCY:

Efficiency
N A = 7 A = 10 A = 20
20 0.93350681 0.87021131 0.57858964
40 0.7546114 0.57497576 0.32496166
60 0.53577398 0.27524707 0.25421617
80 0.32735365 0.20999205 0.2111692

100 0.20256775 0.18173425 0.18184348

The above graph shows that for the persistent mode, CSMA/CD has a greater efficiency it is
applied to fewer nodes. As the number of nodes increases, the probability of having a collision
increases and the number of successful transmits decreases. When the packet rate increases
the efficiency becomes lower as there are more packets scheduled to transmit and it is more likely
for them to collide. But when the number of nodes is large (around 100), simulations at different
packet rates come to a similar low efficiency(around 20%).

All packets have the same back off time so that even though more packets are in the queue, the
numbers of successfully transmitted packets with different packet rates don’t vary by very much.

THROUGHPUT:

Throughput

N A = 7 A = 10 A = 20
20 0.209871 0.3001485 0.5993775
40 0.419124 0.59868 0.9982125

60 0.6298725 0.8779425 0.999624
80 0.8344125 0.9899625 0.9998115

100 0.9347175 0.999156 0.999861

The throughput graph of the persistent CSMA/CD simulation shows that when there are more
nodes, the channel is more likely to be busy for most of the time as there are more packets
distributed at each node waiting for transmission. When the packet rate increases, each node is
carrying more packets so that the channel is more likely to be busy for most of the time.
Throughput increases when the number of nodes or packet rate increases till 1Mb/s.

4. SIMULATION RESULTS: Non-persistent CSMA/CD

EFFICIENCY:

Efficiency
N A = 7 A = 10 A = 20

20 0.99978572 0.99969019 0.99947166
40 0.99867055 0.99821062 0.99999699
60 0.99659791 0.99805102 0.99999099
80 0.99548888 0.99978643 0.99998799

100 0.99630409 0.99994892 0.99998199

The graph above shows that the simulation in non-persistent mode has high efficiency of around
99%. The exponential back off while sensing the medium avoids more collisions and allows
more packets to get transmitted upon every attempt. Each attempt of transmitting is more likely
to be successful in this case. When the number of nodes increases, at high packet rates, the
efficiency is not really affected.

But if the packet rate is low, its efficiency gets slightly affected by the increase in the number of
nodes. More packets get dropped while sensing the medium other than getting into collisions.

THROUGHPUT:

Throughput

N A = 7 A = 10 A = 20

20 0.2099655 0.3000915 0.5958975
40 0.419163 0.595788 0.996675
60 0.621759 0.8280495 0.99999099
80 0.78516 0.983082 0.99957

100 0.8903865 0.99837 0.999702

The graph of non-persistent throughput is like the persistent throughput graph. When the
number of nodes increases or the packet rate increases, the channel is more likely to be busy
all the time. So that the throughput increases until it reaches the 1Mb/s.

Since the persistent and non-persistent throughput graphs are (almost) identical, we can come
to the following conclusion. For low levels of traffic, persistent protocols provide best throughput.
For high levels of traffic load, non-persistent protocols are by far the best!

